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SOLUTION OF THE DIFFERENTIAL EQUATIONS OF HEAT AND MASS
TRANSFER FOR LAMINAR FLOW OF A BINARY GAS MIXTURE OVER A
FLAT PLATE

V. F. Mironov
Inzhenerno~Fizicheskii Zhurnal, Vol. 8, No. 5, pp. 602-608, 1965

An attempt is made to elucidate the increased mass transfer resulting from flow pulsations on the basis of
a solution of the differential equations of heat and mass transfer.

When a binary gas mixture flows over a moist capillary~-porous plate the heat transfer is due to vapor diffusion. If
we denote mass flow normal to the plate by j = pw, = const, then
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This equation may be solved by an operational method (with boundary conditions: y =0, 6 =0, y—> o0, O=={ —
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In these conditions the local Nu number is
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Differentiating (2) with respect to y and putting y = 0, we have
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The local value of the Pe number, referred to the mean integral velocity wy, will be Pe, = w Xx/a , and referred
to the mean integral velocity w, — Pe} = w, x/a.

Taking this into account, we obtain the local Nu number in the form:
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where I1 = Pe;/‘r/ Pe,.

Thus, the local Nu number is expressed as a function of the local Pe number with account for the transverse mass
flow.

When evaporative porous cooling takes place, the evaporating surface sinks a certain distance § into the porous
body. The differential equation of heat transfer retains its previous form:
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The boundary conditions are:
[0, y)=1nq t{x, ) =1m, t(x, U}=ty,
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or 3
/0, x
SO0 g0, 1) —1,] = 0.
dy
[t should be noted that the temperature at the evaporation surface is the wet-bulb temperature (adiabatic
conditions).
After changing variables and solving, we obtain
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The local Nu number for the case of porous cooling with a sunken evaporating surface is
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For the plate surface (¢ = 0) the inverse transform will be
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Let us examine the expression in parentheses in more detail:
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since in our case the velocity Wy is negligibly small in comparison with wy.
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Consequently,
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We find the original of the function from the transform [1}:
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If we neglect heat transfer due to vapor diffusion, i.e., if wy =0, Eq. (11) takes the form:
a

Nu, = Hxexp H%« — erfc H]/ax/wx. (12)

wWe put K = Hx/l/I_D—E;, then Nu,, = Vﬁ_e—xKexp K?erfc K [2]. or
Nu, V= /V Pe, = V= KexpKeericK. (13)
Returning to (11) and making the substitution: '

w,x/a = Pey, Pe./V Pe, =T and Pey/Hx = IT/K,

we have
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If K-> w in (13). i.e., if evaporation takes place at the surface of the plate, we obtain Nu, )/ = /) Pe, = 1.

Denoting the left side of this equation by N, we substitute in it the value of Nuy from (14):
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We thus have an expression for the relative increase in heat transfer during evaporation of moisture from a porous body
with account for the depression of the evaporating surface in the presence of a transverse mass flux.

When the porous body is wetted continuously (water seeping through the pores), i.e., when the drying process
occurs in a period of constant velocity, the temperature of the evaporating surface is constant and the value of { is very
small. In practice, therefore, it is impossible to measure accurately the surface temperature of the body, because, in
practice, thermocouples attached to the surface of the plate will show the wet-bulb temperature.

Let us determine the temperature distribution on the surface of the plate along the x axis. For this purpose we
must return to (7), written in the form
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We find the original of the function from the given transform [1}:
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 Hexpuyya o ( w, ax oy /@_) _ (1n
2(H —wy/a) 2a w, = 2 l/ ax (cont'd)
Therefore the temperature difference t(x, y) — t,, is related to the psychrometric difference ty; —t
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The temperature at the surface, i.e., aty=0, is
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In this case the heat transfer coefficient is calculated as the ratio of heat flux to the psychrometric difference . 2, ==
= g/(l;—1,), and the local Nu number is expressed as
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To find Nuy,, it is necessary to differentiate (18) with respect to y and equate y to zero. After substituting and
simplifying, we obtain
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Then the coefficient Ny, showing the relative change in Ny 1o and hence in the heat transfer coefficient g due to
the evaporating surface sinking into the body, is expressed as
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It should be noted that the value of IT may be assumed constant for given conditions of flow of gas mixture
over the plate. Then, taking into account that K = A, x/LA ]/Rex, we may construct the curve Nyp = f(£) for various
£ (table).

The differentual equation of mass rransfer has the form
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We assume the boundary conditions to be
Y—> 0, P16~ Proy,

x=0, p10(0, y) = Propy,
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We may write (24) as

_ i‘%g_’_x)_ + Hyploso, — 010 (0, 0)] = 0, (25)

Examining (23) and (25), we find that when the notation is changed they coincide with (1) and (6'), and their solution
will be analogous to that of (18) and (22):
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Analyzing (22) and (26), we find that they are similar, and so Ny, also decreases with increasing £.

N\

Changes in Heat and Mass Transfer When the Evaporating Surface Sinks into the Body -

Mass transfer Heat transfer

¢-103,1M1 N, ¢-10s, m N
. M

| . Mass transfer , Heat transfer

‘\t-ma,m [ ci m | N

143.9889 | 0.15876 | 5.4203 | 0.158859|| 7.9993 | 0.88760 | 0.301! 0.888024
71.9943 | 0.28678 | 2.7101 | 0.286513|f ~7.1994 | 0.90429 0.2710 0.904560
47,9963 | 0.39050 | 1.8067 | 0.390324; 6.5449 | 0.91767 0.2464 0.917109
35.9972 | 0.47580 { 1.3551 | 0.472725(i 5.9995 | 0.92855 0.2258 0.939165
28.7977 | 0.54542 | 1.0841 | 0,545284|! 5,5388 | 0.93186 .2085 0.937154
23.9981 | 0.63356 | 0.9034 | 0.603522|| 5.1424 | 0.93884 1936 0.944385
20.5698 | 0.65216 { 0.7743 | 0.652145]| 4.7996 | 0.94524 .1807 0.951105
17.9986 | 0.69313 | 0.6775 | 0.693091|| 4.4996 | . (0.94537 0.951581
15,9987 | 0.72778 | 0.6022 | 0.7275111 4.2349'| 0,94723 .1594 0.952632
14.3989 | 0.75744 | 0.5420 | 0.757368)| 3.9996 | 0.94750 . 1805 0.953502
11.9991 | 0.80403 | 0.4517 | 0,806370|| 3.7892 | 0.94768 ,1426 0.954335
10.2849 | 0.83980 | 0.3872 | 0.839864| 3.5997 | 0.94784 . 1355 0,956067

8.9993 | 0.86707 | 0.3387 | 0.866881|] 0.00 0.99826 0.00 0.999740
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[t is known from experiment that the depth to which the evaporating surface sinks depends on the air flow condi-
tions over the body. For equal values of the Re number in stable and pulsating flow, this depth ¢ varies. As heat and
mass transfer intensify due to pulsations, ¢ decreases, but Njj and Ny increase, although to different degrees. Thus,
for heat transfer, when £ decreases, Ny, increases on that part of the curve Ny = f(&) where the variation of Ny is
slight and the value of Ny is close to its limit, For mass transfer, for the same variation of the depthg, the value of
Ny increases considerably. Hence it is clear that as { decreases, heat and mass transfer increase differently.

We thus reach the conclusion that pulsations of the air flowing over a moist porous body reduce the depth ¢ of the
evaporating surface and considerably increase only the mass transfer, as has been verified experimentally in [3, 4]

NOTATION

ty, — temperature of the vapor-air medium; t,, — wet-bulb temperature; H = M/A¢ - a quantity similar to the
relative heat transfer coefficient; Hyy, = am/amé — a quantity similar to the relative mass transfer coefficient; Ny —a
dimensionless quantity describing the relative increase in local Nusselt number when moisture is evaporated from a por-
ous body as compared with evaporation at the surface of the body.
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